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Abstract

Facial action unit (AU) recognition is essential for recognizing fine-grained changes
in facial expression, while the demand for a large amount of accurately labeled AU data
for training purposes has resulted in high labor costs. Nevertheless, massive face im-
ages are widely available and inaccurate labels can be easily obtained, especially as large
vision-language pre-training models progress. This paper introduces the Regularized Co-
Training (ReCoT) method, which leverages the useful information from both accurately
labeled (clean) and inaccurately labeled (noisy) face images to achieve robust AU recog-
nition. ReCoT uses a two-head network in each view, with one for clean data modeling
(clean net) and the other for noisy data modeling (noisy net) by learning label noise w.r.t.
the clean predictions. Additionally, a selective balanced loss is proposed for the noisy net
to learn from noisy labels and alleviate the imbalanced issue in the clean net. Extensive
experiments on several AU databases, including EmotioNet, BP4D and DISFA, show
that ReCoT effectively leverages noisy AU data to improve the model performance. The
code is available: https://github.com/JackYFL/ReCoT_BMVC2023.

1 Introduction
Facial expressions offer valuable cues about affective states, mental health and personality.
They can be encoded as diverse combinations of comprehensive facial action units (AUs)
according to Facial Action Coding System (FACS) [4]. Each AU encompasses a range of
muscle movements, varying in intensity and position. However, deciphering the precise
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Figure 1: A comparison between SSL and WSL for AU recognition. SSL learns from a
clean set with accurate AU labels and an unlabeled set without AU labels. WSL consists of
two cases, i.e., (b) learning from a clean set and an inexact set with inexactly labeled AUs
(e.g., emotions), and (c) learning from a clean set and a set with inaccurate (noisy) AU labels.

muscle movements corresponding to each AU can be challenging due to their subtle and
ambiguous nature. Consequently, extensive training is required for a qualified AU annotation
expert. Moreover, even for trained experts, manually labeling AUs is a time-consuming task.
By contrast, inaccurate AU labels can be easily obtained at a low cost using pre-trained AU
recognition models or employing non-professional annotators through crowd-sourcing.

While tremendous progress has been made on facial AU recognition, the limitation of
accurately labeled AU data has hindered the research of AU recognition methods. Many ex-
isting approaches mainly require accurately labeled AU data [22, 28, 33, 43, 44]; thus, they
can easily get over-fitting when the accurately labeled AU data is limited. Some recent works
utilized unlabeled data through semi-supervised learning (SSL) to improve the AU recogni-
tion accuracy [21, 24]. While SSL-based AU recognition methods show better robustness
than fully-supervised learning methods under small labeled data scenarios, as shown in Fig.
1, they cannot exploit the useful information from inexact or inaccurate AU labels (weakly
supervised learning, WSL [6]) that can be easily obtained at a low cost. For example, Emo-
tioNet [5] contains 25,000 face images with accurate AU labels and 975,000 face images
with inaccurate AU labels. Facial AU recognition methods that can learn from noisy labels
(LNL, a.k.a, noisy label learning) can greatly extend the application scope in practice.

LNL-based methods have achieved great success in general image classification, which
can be divided into three trends, i.e., regularization [11, 18, 19, 26, 41], sample selection
[7, 40] and label correction [8, 26, 32]. Regularization-based methods try to improve the
model robustness by designing more robust loss functions [19, 26] or augmentation strate-
gies [41]. However, the performance of regularization-based methods is sensitive to the
degree of label noises (see Table 1). Sample selection-based methods aim to select reliable
samples from noisy data via losses [7, 40] or feature similarity [14]; however, the unselected
data are ignored during model training, which may affect the generalization abilities. La-
bel correction-based methods re-annotate samples by either soft pseudo labels [32] or hard
pseudo labels [16], which is easy to induce confirmation bias. In addition, most LNL-based
methods only consider the single-label situation. When the clean set and noisy set contain
multi-labels, there are only a limited number of approaches, such as noise regularization
(NR) [11] and label cleaning network (LCN) [35].

The main contributions of this work are as follows. (1) We propose a novel regularized
co-training method (ReCoT) for AU recognition with noisy labels, which uses a two-head
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network (clean net and noisy net) in each of the two views to model the clean data and
the label noise between clean and noisy data, respectively. Such a model exploits useful
information from noisy data to improve the robustness of the clean net while reducing the risk
of over-fitting. We empirically show that noisy data can offer useful information to improve
performance. (2) We propose a novel selective balanced loss for the noisy net, which selects
a portion of small AU negative logarithm likelihood (NLL) to update the parameters and
decouples positive and negative components with individual weights. Such a loss can learn
from noisy labels via noisy net and alleviate the imbalanced problem of the clean net.

2 Related Work
Existing methods using additional images and manually labeled images for AU recognition
can be categorized into two folds: SSL- and WSL-based methods (see Fig. 1). SSL-based
methods aims at leveraging unlabeled images to improve the model’s generalization ability.
WSL-based methods focus on exploiting useful information from images with inexact or
inaccurate annotations. Inexact annotations can be coarse-grained labels w.r.t. the task, i.e.,
expression labels for AU recognition tasks. Inaccurate annotations, i.e., noisy labels, tend to
contain wrong annotations and LNL-based methods are aimed for this task.

Semi-Supervised AU Recognition: To leverage the unlabeled images, self-training was
proposed for AU recognition in [36, 37], which first train a teacher net on a small subset
of clean data and use it to annotate unlabeled images and obtain pseudo-AU labels. Then,
they jointly use the clean labels and pseudo labels with high confidence to train the whole
network. However, such models may induce confirmation bias from pseudo labels, and the
training time is heavy. Niu et al. [21] proposed a co-training method with co-regularization
to leverage both labeled and unlabeled face images for semi-supervised AU recognition,
while this method cannot use the effective information in noisy labels.

Weakly-Supervised AU Recognition: Zhao et al. [45] utilized spectral clustering to
learn an embedding space for re-annotating AU labels of noisy images. However, spectral
clustering may not work well when the number of images is large, and the data distribu-
tion is severely imbalanced. Moreover, this method doesn’t utilize the clean set information
during re-annotating which may cause bias. Peng et al. [23] proposed to learn from do-
main knowledge and expression-annotated facial images through adversarial training. They
treat expression labels rather than noisy AU labels as weak labels, while the acquiring of
expression labels may need another expression-based dataset, and there also exist noises in
expression labels. Cui et al. [3] utilized Bayesian Network (BN) to capture the generic
knowledge on relationships between AUs and expressions, which is then embedded into a
deep learning network. Again, their method also requires expression labels as weak labels.

3 Proposed Method

3.1 Formulation
Let D = N

⋃
C = {(xi,yi)}N

i=1 denote a facial AU dataset with L AUs in total, in which
N = Nnoisy +Nclean, N = {(xnoisy

j , ynoisy
j )}Nnoisy

j=1 is the noisy set with inaccurate AU labels,

and C = {(xclean
j ,yclean

j )}Nclean
j=1 is the clean set with accurate AU labels. yi ∈ ZL denotes the

AU labels of L dimensions, and yi,k indicates each entry of yi. In the cases when some AUs
are not visible, the AUs can be labeled as 0; otherwise, the AUs are labeled as either 1 or -1
denoting activation or not, i.e., yi,k ∈ {1,−1} or yi,k ∈ {1,0,−1}.
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Figure 2: ReCoT uses a network with two heads (netclean and netnoisy) per view (formed by
two independent augmentations). netclean performs AU classification using only the clean
data. netnoisy aims at noisy data modeling by learning label noise which can be combined
with the output feature by netclean to obtain the feature for predicting the noisy AU labels.
As a result, netnoisy works as a regularization term to avoid over-fitting of netclean. Moreover,
temporal label refinement is proposed to obtain more reliable labels for the noisy data, which
are used to co-teach the netnoisy to improve the performance further.

The goal of our approach is to learn an AU classifier F by using both N and C, which
is expected to work better than an AU classifier learned from C alone. This is a different
problem than SSL, which can only use unlabeled data instead of noisy data. In this work, we
learn F by proposing a Regularized Co-Training approach (ReCoT), which can effectively
exploit the useful information in both the clean set C and the noisy set N . The overall
framework of ReCoT is shown in Fig. 2, which consists of two components: regularized
co-training and temporal label refinement.

3.2 Regularized Co-Training
As shown in Fig. 2, ReCoT avoids getting biased by co-training learning from two views
formed by two independent augmentations. In each view, netnoisy is utilized to dig useful
information from noisy labels and works as a regularization term to prevent netclean from
over-fitting to the small clean set. The overall loss L can be denoted as

L =
1
2

2

∑
v=1

(Lv
clean +λnLv

noisy)+λconsLcons, (1)

where Lv
clean, Lv

noisy, Lcons indicate clean net loss, noisy net loss and consistency loss. λn and
λcons are hyper-parameters balancing different losses. Then we’ll detail each loss below.

As shown in Fig. 2, ReCoT uses a two-view learning network. For each view, we design
two heads: clean net (netclean) and noisy net (netnoisy). netclean performs AU classification
only using the randomly sampled face images from clean set C. The prediction probability by
netv

clean in the v-th view can be expressed as p̂clean
v = σ( f clean

v ), where f clean
v = netv

clean( fv) is
the features produced by clean net. Then, we can use a binary cross-entropy loss to optimize
f clean
v . Since the AU distribution is extremely imbalanced in practice, a selective learning

strategy [9] is employed. The loss Lv
clean for netclean in the v-th view can be denoted as

Lv
clean =

1
L

L

∑
k=1

α
clean
k [yclean

k log p̂clean
v,k +(1− yclean

k ) log(1− p̂clean
v,k )], (2)
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where αclean
k is a selecting parameter for deciding whether this AU is used or not. For a face

image with an AU label of ‘0’, we directly set αclean
k to zero to ignore its influence on loss

computation. We turn the AU label ‘-1’ to ‘0’ to calculate the cross-entropy loss.
Different from the clean label supervised learning in netclean, netnoisy learns label noise

which can be combined with the output by netclean to predict the noisy AU labels. Let
f noisy
v = netv

noisy( fv) denote the features produced by noisy head. Then, the AU prediction
probability by netv

noisy in the v-th view can be expressed as

p̂noisy
v = σ( f clean

v ⊕ f noisy
v ), (3)

where ⊕ indicates element-wise feature summation.
In order to reduce the contamination and the imbalanced problem of noisy AU labels,

we propose selective balanced loss Lv
noisy for netnoisy in the v-th view, which consists of two

negative logarithm likelihood (NLL): the positive NLL, and the negative one:

Lv
noisy =

−α∣∣Dv′
p
∣∣ ∑
(i,k)∈Dv′

p

log pnoisy
v,i,k +

−β∣∣Dv′
n
∣∣ ∑
(i,k)∈Dv′

n

log(1− pnoisy
v,i,k ), (4)

where α,β ∈ [0,1] are the balanced coefficients that control the weight of positive NLL and
negative NLL, respectively. (i,k) means the k-th AU of the i-th face image. Dv′

p and Dv′
n

indicate the selected positive and negative small AU NLL sets of the other view (v′) using
refined AU labels ỹnoisy, respectively. Specifically,

∣∣∣Dv′
p

∣∣∣= γNp,
∣∣∣Dv′

n

∣∣∣= γNn, where γ is the
selected ratio, Np and Nn indicate the numbers of positive and negative AU entries of refined
noisy AU labels ỹnoisy, respectively.

Most of the existing LNL-based methods have explicit assumptions about the noisy label
distributions, and their performance may drop significantly when the assumptions do not
hold. While in our approach, we do not require such assumptions. As shown in Fig. 2,
netnoisy learns label noise between the predictions for noisy and clean labels, which acts as
a regularization term. As a result, the modeling capability and robustness of netclean in each
view can be significantly improved compared to learning from only clean data. Additionally,
Lnoisy can exploit the useful information in noisy labels by selecting reliable ones and co-
teaching netnoisy, and it can also alleviate the imbalanced issue of netclean by decoupling
positive and negative AU NLL with two different weights α,β .

In addition to the regularization in each view, ReCoT also uses a cross-view consistency
loss Lcons to assure that the AU predictions for both the clean and noisy data by the netclean
heads in two views should be as consistent with each other [21, 25]

Lcons =
1
L

L

∑
k=1

[H(
p̂clean

1,k + p̂clean
2,k

2
)−

H(p̂clean
1,k )+H(p̂clean

2,k )

2
], (5)

where H(p(x)) =−(p(x) log p(x)+(1− p(x)) log(1− p(x))) denoting the entropy of AU x.

3.3 Temporal Label Refinement

Assume that the fusion prediction probability p̂ f usion can be expressed as:

p̂ f usion = µ p̄noisy(xnoisy)+(1−µ)p̄clean(xnoisy), (6)
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Table 1: F1 score (in%) for recognition of 12 AUs by different methods on the EmotioNet
database. Baseline is ImageNet pre-trained ResNet-34 on C. Except for the results with *,
all the other results are taken directly from paper [21].

Method/AU 1 2 4 5 6 9 12 17 20 25 26 43 Avg.

SL Baseline* 60.2 45.4 72.8 51.5 81.4 65.4 91.2 53.0 46.7 95.0 61.7 66.6 65.9

SSL

MLCT [38] 57.8 44.8 [73.7] 50.1 82.8 58.1 [91.8] 44.8 37.1 [95.1] [61.6] 63.4 63.4
MT [34] 55.5 46.3 71.7 48.6 81.6 61.7 91.0 46.7 43.5 94.7 60.2 63.9 63.7
CoT [1] [58.3] [48.4] 70.0 [50.4] [83.1] [64.4] 91.7 [49.9] [47.1] 95.0 60.0 [66.9] [65.5]
MLCR [21] 61.4 49.3 75.9 54.1 83.5 68.3 92.0 50.8 53.5 95.2 65.1 68.1 68.1

WSL

Mixup* [41] 40.9 29.3 65.1 39.0 77.6 54.9 90.8 32.8 41.9 93.4 46.1 52.3 55.3
BS-S* [26] 49.0 36.4 67.8 45.6 78.9 54.5 90.6 37.8 46.0 93.4 50.2 59.9 59.2
BS-H* [26] 48.0 36.5 67.9 45.9 79.1 55.5 90.6 37.7 49.6 93.4 50.3 59.0 59.5
KD* [18] 59.4 45.0 [74.0] 52.8 [82.1] [66.1] [91.7] 50.8 53.2 [95.1] 59.6 [68.2] 66.5
NR* [11] [61.7] [49.5] 73.0 [53.1] 81.3 65.0 91.3 [51.9] [54.3] 94.8 [61.0] 66.2 [66.9]
ReCoT* 64.2 52.0 77.8 55.6 83.9 70.5 92.5 58.7 57.3 95.9 65.8 72.9 70.6

where µ is the fusion ratio, p̄noisy(xnoisy) and p̄clean(xnoisy) indicate the average probability of

netnoisy and netclean from two views to noisy images xnoisy: p̄clean(xnoisy) =
1
2

2
∑

v=1
p̂clean

v (xnoisy),

p̄noisy(xnoisy) = 1
2

2
∑

v=1
p̂noisy

v (xnoisy). In order to fuse the information in the previous epochs,

we propose to adopt temporal filtering by performing exponential smoothing on p̂ f usion:

p̂ f usion
t = φ p̂ f usion

t−1 +(1−φ)p̂ f usion, (7)

where φ is the momentum ratio, p̂ f usion
t−1 is the fusion prediction probability of the last epoch.

Then, the refined labels y f usion
t is expressed as y f usion

t = 1[p̂ f usion
t > 0.5]. Since the modeling

capacity of netnoisy is not strong enough at the beginning of the training, we regard noisy
labels as the refined noisy labels ỹnoisy

t before the network is converged at the K-th epoch.
We then use the refined AU labels ỹnoisy to retrain the netnoisy in both views. Note that

the gradient of pnoisy and pclean has been stopped when computing ỹnoisy. During the infer-
ence phase, we use the average AU prediction of the two netv

clean in two views as our final
AU recognition results. Our rationale is that when the co-training network gradually con-
verges, the refined labels ỹnoisy, which fuses the temporal information of netclean and netnoisy,
becomes more reliable than the original noisy labels ynoisy.

4 Experiment
We provide evaluations for the proposed approach on three widely used facial AU databases
(EmotioNet [5], BP4D [42] and DISFA [20]). All the datasets are publicly available, so there
are no Institutional Review Board issues.

4.1 Databases and Protocols
EmotioNet is an in-the-wild AU database containing 975,000 images with 12 pseudo-AU
labels ({-1, 1}, noisy labels) produced by the algorithm in [5] and 25,000 images with 23
manual AU labels ({-1, 0, 1}, clean labels). Following the protocol in [21], we also use 12
AUs (1, 2, 4, 5, 6, 9, 12, 17, 20, 25, 26, 43) for evaluations. Since some download links
provided with the data are broken, we are only able to get 20,722 face images with manual
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Table 2: F1 score (in%) for recognition of 12 AUs by ReCoT on the BP4D database. Baseline
is ImageNet pre-trained ResNet-34 on C. Except for the results with *, all the other results
are taken directly from the original papers.

Method/AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg.

SL

DRML [44] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3
EAC-Net [17] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
DSIN [2] 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9
CMS [27] 49.1 44.1 50.3 79.2 74.7 80.9 88.3 63.9 44.4 60.3 41.4 51.2 60.6
LP-Net [15] 43.4 38.0 54.2 77.1 76.7 [83.8] 87.2 63.3 45.3 60.5 [48.1] 54.2 61.0
ARL [29] 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 [55.4] 61.1
JÂA-Net* [30] 47.2 41.6 49.1 77.2 77.5 82.9 85.8 63.4 50.8 62.5 47.2 52.7 61.5
Baseline* 49.3 43.6 57.2 77.6 [78.4] 83.0 85.7 60.2 49.5 61.6 47.0 47.0 61.6
SRERL [15] 46.9 45.3 55.6 77.1 [78.4] 83.5 [87.6] 60.6 [52.2] 63.9 47.1 53.3 62.9
HMP-PS [31] [53.1] 46.1 56.0 76.5 76.9 82.1 86.4 [64.8] 51.5 63.0 49.9 54.5 63.4
SEV-Net [39] 58.2 50.4 [58.3] 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 [63.9]
ATCM [12] 51.7 [49.3] 61.0 [77.8] 79.5 82.9 86.3 67.6 51.9 [63.0] 43.7 56.3 64.2

SSL
MLCR* [21] [45.5] [40.0] [48.6] [76.4] [77.0] [81.6] [85.7] 62.8 [39.2] [61.8] [41.0] 51.8 [59.3]
MT* [34] 50.2 42.5 57.9 77.1 79.5 83.9 86.7 [60.6] 51.3 62.2 47.9 [47.0] 62.2

WSL

BS-S* [26] 51.2 42.5 55.7 76.5 78.8 83.4 87.0 59.1 48.8 62.5 45.7 49.4 61.7
BS-H* [26] 52.1 43.6 55.3 77.7 78.8 83.9 86.5 59.3 50.5 62.8 45.8 49.2 62.1
Mixup* [41] 54.6 43.7 57.1 79.5 79.3 [84.6] [87.7] 62.8 [53.2] [63.6] 46.3 39.5 62.6
NR* [11] 50.1 44.1 56.0 77.4 78.9 83.5 86.6 59.1 50.0 62.3 [49.7] [53.7] 62.6
KD* [18] [52.2] [44.7] 59.7 78.3 [79.8] 84.4 86.8 61.0 50.6 62.1 48.4 51.2 [63.3]
ReCoT* 51.5 47.8 [58.9] [79.2] 80.2 84.9 88.4 [61.6] 53.3 64.6 51.8 55.4 64.8

annotations, in which we use 15, 000 randomly selected face images for training, and the
remaining 5, 722 images for testing. We perform a random dataset split three times to run the
experiments to avoid biased results. BP4D contains 328 videos from 41 subjects including
23 females and 18 males. There are 12 AUs (1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, 24) and about
140,000 frames with AU labels ({-1, 1}). We follow [17, 28], and use a subject-exclusive 3-
fold cross-validation testing protocol. DISFA includes 27 videos recorded from 12 females
and 15 males, and 8 of the 12 AUs are used for evaluation. There are about 130,000 frames,
with each frame annotated with an AU intensity from 0 to 5. Following [21, 44], an AU with
intensity equal to or greater than 2 is considered to be activated; otherwise, it is considered
inactivated ({-1, 1}).

We use dlib to detect five facial landmarks and use them to align and crop the face images
into 240×240. During training, each face image is randomly cropped to 224×224, with
random horizontal flipping, grayscale, and color jittor for data augmentation. During testing,
we only use center cropping. Following [21], we also use 50,000 face images with pseudo
labels in EmotioNet as our noisy dataset for all three databases. For BP4D and DISFA, we
generate their noisy labels by using a baseline trained on BP4D and DISFA with according
fold, respectively.

In this paper, "clean set" refers to the subset that has the manually verified labels, while
"noisy set" refers to the remaining training data with inaccurate labels (pseudo-labels in our
setting). However, we don’t impose a specific limitation on the source of label noise.

4.2 Training Details and Evaluation Metrics
Training details. We use two ResNet-34 [10] as encoders. netclean and netnoisy are two-
layer perceptron structures (512×L). We use Adam optimizer [13] with a constant learning
rate of 0.001 to optimize the whole network. We use ImageNet pre-trained ResNet-34 as
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Table 3: F1 score (in%) results for recognition of 8 AUs on DISFA. Baseline is ImageNet
pre-trained ResNet-34 on C. Except for the results with *, all the other results are taken
directly from the original papers.

Method/AU 1 2 4 6 9 12 25 26 Avg.

SL

DRML [44] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
EAC-Net [17] 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
DSIN [2] 42.4 39.0 68.1 28.6 46.8 70.8 90.4 42.2 53.6
SRERL [15] 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
LP-Net [22] 29.9 24.7 [72.7] 46.8 49.6 72.9 93.8 65.0 56.9
CMS [27] 40.2 44.3 53.2 57.1 50.3 73.5 81.1 59.7 57.4
Baseline* 45.5 36.0 68.0 40.1 40.8 74.2 94.2 61.0 57.6
ARL [29] 43.9 42.1 63.6 41.8 40.0 76.2 [95.2] 66.8 58.7
JÂA-Net* [30] 38.6 41.7 68.0 41.2 39.5 [77.0] 94.3 69.5 58.7
SEV-Net [39] 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8
HMP-PS [31] 38.0 45.9 65.2 50.9 [50.8] 76.0 93.3 [67.6] 61.0
ATCM [12] [46.1] [48.6] 72.8 [56.7] 50.0 72.1 90.8 55.4 61.5

SSL MLCR* [21] [42.7] [31.8] [65.6] 47.5 49.9 77.0 [93.7] 65.2 [59.2]
MT* [34] 48.4 40.0 66.3 [43.9] [43.7] [74.6] 93.8 [63.2] 59.3

WSL

BS-H* [26] 40.4 37.7 68.4 42.0 45.9 74.6 94.0 61.2 58.0
BS-S* [26] 42.9 41.7 67.2 41.1 48.1 74.3 94.2 58.9 58.5
NR* [11] 43.2 35.2 [67.9] [45.8] 48.3 75.1 94.5 [62.2] 59.0
Mixup* [41] [48.7] 40.6 64.9 45.3 45.8 [77.4] 93.4 57.6 59.2
KD* [18] 48.0 38.5 69.1 45.3 [50.3] 76.0 [94.6] 59.4 [60.1]
ReCoT* 51.3 36.2 66.8 50.1 52.4 78.8 95.3 69.7 62.6

encoder and finetune the whole network when testing on EmotioNet, BP4D and DISFA. The
maximum training epochs for EmotioNet, BP4D, and DISFA are 70, 25, and 25, respectively.
In each epoch, similar to [21], we use a batch size of 100, and randomly sample face images
from clean data and noisy data. More details about hyper-parameters could be found in
Appendix. All the experiments are conducted on GeForce GTX 3090 GPU using PyTorch.

Evaluation Metrics. Following [17, 22, 30], we report F1 score and the average F1
score (Avg.) on three datasets (Table 1, 2, 3), where the best and the second best results are
indicated with bold and brackets, respectively.

4.3 AU Recognition Results

Results on EmotioNet. We compare ReCoT with several SOTA SSL-based AU recognition
methods. For a fair comparison, these methods also use ResNet-34 as backbone and the same
testing protocol. ResNet-34 using ImageNet pre-trained model and finetuned with only clean
data is also used as a baseline. The experiment results are presented in Table 1, in which the
result for baseline, Mixup, BS, KD and NR are implemented by us, and the results for the
other SOTA methods are taken from [21]. The details about re-implement algorithms can be
found in Appendix.

We can see that our method outperforms all the SOTA methods by a large margin. This
indicates that although the noisy labels are inaccurate, there is useful information that can be
exploited to improve the network performance. Furthermore, the results suggest leveraging
noisy labels can avoid model over-fitting and improve generalization ability. In addition,
since the original noisy labels in EmotioNet include more noises (Table 4), BS and Mixup
perform worse than KD and NR which are more robust to noisy labels.

Results on BP4D. Table 2 reports the F1 score of the SOTA supervised learning methods,
SSL method and WSL methods on BP4D. ResNet-34 trained with only clean data is used
as a baseline, which is the same as EmotioNet. We run MLCR [21], JÂA-Net [30] and MT
[34] using its open-sourced code.
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Table 4: The ablation study of ReCoT on EmotioNet. Baseline (C) means baseline is trained
on C. Baseline (N ) and Baseline (N +C) are defined in the same way. Baseline + netnoisy
indicates baseline with two heads that is trained on N + C. CoT and TLR represent co-
training without netnoisy and temporal label refinement, respectively.

Method Avg.

w/o pre w pre

Baseline (C) 63.1 65.9
Baseline (N ) 45.2 45.6
Baseline (C+N ) 56.6 59.2

(a) Different training sets

Method Avg.

w/o pre w pre

Baseline + netnoisy 65.5 66.9
Baseline + ensemble 65.4 66.8
Baseline + CoT 68.6 69.5
Baseline + CoT + netnoisy 69.0 69.8
Baseline + CoT + netnoisy + TLR 69.2 70.1

(b) Different components

Method α β γ
Avg.

w/o pre w pre

ReCoT 1 1 1 69.2 70.1
ReCoT 1 1 0.9 69.3 70.1
ReCoT 1 0.5 0.9 69.4 70.3
ReCoT 1 0.1 0.9 69.7 70.6

(c) Hyper-parameter of Lv
noisy

It can be observed that ReCoT overall outperforms all previous works w.r.t. the aver-
age F1 score. Compared with SSL-based methods such as MLCR and Mean-Teacher, we
improve around 5.5% and 2.6% on average F1 score by learning from noisy labels. Our
method also performs better than other WSL methods which shows that our method is effi-
cient in exploiting extra information from noisy data. Compared with SL methods, such as
LP-Net, JÂA-Net and ATCM, which require landmarks or attention maps, we also achieve
better results by learning from noisy data.

Results on DISFA. We compare with supervised, SSL and WSL AU recognition meth-
ods which are the same as BP4D. The results are presented in Table 3.

The results show that our results perform better than SSL-based methods, which indicate
that noisy labels could provide useful information via netnoisy to improve performance. Com-
pared with WSL-based methods, we also perform well, which is contributed to co-training
which has two views to provide diverse features. ATCM achieves a slightly higher F1-score
than our method, particularly for AUs 2, 4 and 6. This is because ATCM leveraged facial-
landmarks-based attention maps and a larger backbone network (Inception V3) for feature
learning. Moreover, the big illumination, pose, and background gaps between DISFA and
extra dataset EmotioNet also bring additional challenges for AU recognition.

4.4 Ablation Study

We provide ablation studies in Table 4 to investigate the effectiveness of individual com-
ponents in ReCoT, considering both finetuning from ImageNet pre-trained model (pre) and
learning from scratch (w/o pre) to better validate the effectiveness of each modules.

The effectiveness of two heads. The F1 scores of the baseline model with and without
using pre-training increase by 1% and 2.4%, respectively after using two heads per view
(netnoisy in Table 4 (b)). Similarly, the F1 scores of co-training with and without using pre-
training improve by 0.3% and 0.4%, after using two heads. This suggests that our two-head
structure is effective in exploiting useful information from noisy data to improve the model’s
robustness. Since the noises of noisy labels in EmotioNet are heavy, the performance of
baseline gets worse when using N (only 45.6% in N and 59.2% in both N and C). Because
ReCoT uses netnoisy to decouple noisy data from netclean, which could alleviate the damage
of noisy labels and make use of noisy labels. Compared with SSL methods such as MT and
MLCR, ReCoT also achieves remarkable results (see Table 1, 2, 3), demonstrating that two
heads could improve performance and robustness by learning from noisy labels.

The effectiveness of co-training. After adding a co-training module, the F1 score in-
creases 3.6% and 6.5% compared with the baseline under pre-training and no pre-training
conditions. While since ensemble learning just utilizes the fusion outputs of two nets, the
individual module can not promote each other and the performance is worse than co-training.
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This indicates that co-training is effective in improving the performance of both two views.
The effectiveness of Lnoisy. We can see from Table 4 (c) that the F1 score improves

about 0.4% and 0.5% for ReCoT compared with the one without Lnoisy. Moreover, since
the noisy labels are imbalanced, the performance of ReCoT improves further when decreas-
ing β , which demonstrates the effectiveness of the positive and negative NLL decoupling.
Moreover, the performance has been slightly improved when selecting from noisy labels.

The effectiveness of TLR. As shown in Table 4 (b), F1 score improves about 0.3% after
adding temporal label refinement, which could provide more reliable pseudo-AU labels for
netnoisy by fusing the temporal information of both netclean and netnoisy.

Additionally, we investigate other factors related to our work in the Appendix, such as
the effectiveness of noisy data, the convergence speed between baseline and ReCoT, the
influence of encoder choice, the scale of the noisy image and modeling of label noise, etc.

5 Conclusion

In this work, we propose a regularized co-training approach (ReCoT) to learn a robust AU
recognition model by using both clean data with accurate AU labels and noisy data with
inaccurate AU labels. ReCoT uses a two-head network in each of two views: one for clean
data modeling and the other for noisy data modeling. As a result, the noisy net can work as
a regularization term modeling label noise to exploit the useful information from the noisy
set to improve the performance and avoid over-fitting. We also propose selective balanced
loss to learn from noisy labels and reduce the imbalanced problems of a clean net. We wish
ReCoT could be employed to leverage the knowledge of the vision-language pre-training
models in future applications for multi-label classification tasks.

References
[1] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-

training. In Proc. CoLT, pages 92–100, 1998.

[2] Ciprian Corneanu, Meysam Madadi, and Sergio Escalera. Deep structure inference
network for facial action unit recognition. In Proc. ECCV, pages 298–313, 2018.

[3] Zijun Cui, Tengfei Song, Yuru Wang, and Qiang Ji. Knowledge augmented deep neural
networks for joint facial expression and action unit recognition. In Proc. NeurIPS,
volume 33, 2020.

[4] Paul Ekman and Erika L Rosenberg. What the Face Reveals: Basic and Applied Studies
of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford
University Press, 1997.

[5] C Fabian Benitez-Quiroz, Ramprakash Srinivasan, and Aleix M Martinez. Emotionet:
An accurate, real-time algorithm for the automatic annotation of a million facial ex-
pressions in the wild. In Proc. CVPR, pages 5562–5570, 2016.

[6] Eric Granger, Patrick Cardinal, et al. Weakly supervised learning for facial behavior
analysis: A review. arXiv preprint arXiv:2101.09858, 2021.



LI ET AL.: RECOT FOR FACIAL AU RECOGNITION WITH NOISY LABELS 11

[7] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,
and Masashi Sugiyama. Co-teaching: Robust training of deep neural networks with
extremely noisy labels. In Proc. NeurIPS, volume 31, 2018.

[8] Jiangfan Han, Ping Luo, and Xiaogang Wang. Deep self-learning from noisy labels. In
Proc. ICCV, pages 5138–5147, 2019.

[9] Emily Hand, Carlos Castillo, and Rama Chellappa. Doing the best we can with what
we have: Multi-label balancing with selective learning for attribute prediction. In Proc.
AAAI, volume 32, 2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proc. CVPR, pages 770–778, 2016.

[11] Mengying Hu, Hu Han, Shiguang Shan, and Xilin Chen. Weakly supervised image
classification through noise regularization. In Proc. CVPR, pages 11517–11525, 2019.

[12] Geethu Miriam Jacob and Bjorn Stenger. Facial action unit detection with transformers.
In Proc. CVPR, pages 7680–7689, 2021.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Proc. ICLR, 2014.

[14] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun Yang. Cleannet: Transfer learn-
ing for scalable image classifier training with label noise. In Proc. CVPR, pages 5447–
5456, 2018.

[15] Guanbin Li, Xin Zhu, Yirui Zeng, Qing Wang, and Liang Lin. Semantic relationships
guided representation learning for facial action unit recognition. In Proc. AAAI, vol-
ume 33, pages 8594–8601, 2019.

[16] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels
as semi-supervised learning. In Proc. ICLR, 2019.

[17] Wei Li, Farnaz Abtahi, Zhigang Zhu, and Lijun Yin. Eac-net: Deep nets with enhancing
and cropping for facial action unit detection. IEEE TPAMI, 40(11):2583–2596, 2018.

[18] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, and Li-Jia Li.
Learning from noisy labels with distillation. In Proc. CVPR, pages 1910–1918, 2017.

[19] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda.
Early-learning regularization prevents memorization of noisy labels. In Proc. NeurIPS,
volume 33, pages 20331–20342, 2020.

[20] S Mohammad Mavadati, Mohammad H Mahoor, Kevin Bartlett, Philip Trinh, and Jef-
frey F Cohn. Disfa: A spontaneous facial action intensity database. IEEE TAC, 4(2):
151–160, 2013.

[21] Xuesong Niu, Hu Han, Shiguang Shan, and Xilin Chen. Multi-label co-regularization
for semi-supervised facial action unit recognition. In Proc. NeurIPS, pages 909–919,
2019.



12 LI ET AL.: RECOT FOR FACIAL AU RECOGNITION WITH NOISY LABELS

[22] Xuesong Niu, Hu Han, Songfan Yang, Yan Huang, and Shiguang Shan. Local relation-
ship learning with person-specific shape regularization for facial action unit detection.
In Proc. CVPR, pages 11917–11926, 2019.

[23] Guozhu Peng and Shangfei Wang. Weakly supervised facial action unit recognition
through adversarial training. In Proc. CVPR, pages 2188–2196, 2018.

[24] Guozhu Peng and Shangfei Wang. Dual semi-supervised learning for facial action unit
recognition. In Proc. AAAI, volume 33, pages 8827–8834, 2019.

[25] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep co-training
for semi-supervised image recognition. In Proc. ECCV, pages 135–152, 2018.

[26] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and
Andrew Rabinovich. Training deep neural networks on noisy labels with bootstrapping.
In Proc. ICLRW, 2014.

[27] Nishant Sankaran, Deen Dayal Mohan, Srirangaraj Setlur, Venugopal Govindaraju, and
Dennis Fedorishin. Representation learning through cross-modality supervision. In
Proc. FG, pages 1–8, 2019.

[28] Zhiwen Shao, Zhilei Liu, Jianfei Cai, and Lizhuang Ma. Deep adaptive attention for
joint facial action unit detection and face alignment. In Proc. ECCV, pages 705–720,
2018.

[29] Zhiwen Shao, Zhilei Liu, Jianfei Cai, Yunsheng Wu, and Lizhuang Ma. Facial action
unit detection using attention and relation learning. IEEE TAC, 2019.

[30] Zhiwen Shao, Zhilei Liu, Jianfei Cai, and Lizhuang Ma. Jaa-net: Joint facial action
unit detection and face alignment via adaptive attention. IJCV, 129(2):321–340, 2021.

[31] Tengfei Song, Zijun Cui, Wenming Zheng, and Qiang Ji. Hybrid message passing with
performance-driven structures for facial action unit detection. In Proc. CVPR, pages
6267–6276, 2021.

[32] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. Joint opti-
mization framework for learning with noisy labels. In Proc. CVPR, pages 5552–5560,
2018.

[33] Yang Tang, Wangding Zeng, Dafei Zhao, and Honggang Zhang. Piap-df: Pixel-
interested and anti person-specific facial action unit detection net with discrete feed-
back learning. In Proc. ICCV, pages 12899–12908, 2021.

[34] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In Proc.
NeurIPS, volume 30, 2017.

[35] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and Serge Be-
longie. Learning from noisy large-scale datasets with minimal supervision. In Proc.
CVPR, pages 839–847, 2017.



LI ET AL.: RECOT FOR FACIAL AU RECOGNITION WITH NOISY LABELS 13

[36] Pengcheng Wang, Zihao Wang, Zhilong Ji, Xiao Liu, Songfan Yang, and Zhongqin
Wu. Tal emotionet challenge 2020 rethinking the model chosen problem in multi-task
learning. In Proc. CVPRW, pages 412–413, 2020.

[37] Philipp Werner, Frerk Saxen, and Ayoub Al-Hamadi. Facial action unit recognition in
the wild with multi-task cnn self-training for the emotionet challenge. In Proc. CVPRW,
pages 410–411, 2020.

[38] Yuying Xing, Guoxian Yu, Carlotta Domeniconi, Jun Wang, and Zili Zhang. Multi-
label co-training. In Proc. IJCAI, pages 2882–2888, 2018.

[39] Huiyuan Yang, Lijun Yin, Yi Zhou, and Jiuxiang Gu. Exploiting semantic embedding
and visual feature for facial action unit detection. In Proc. CVPR, pages 10482–10491,
2021.

[40] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama.
How does disagreement help generalization against label corruption. In Proc. ICML,
pages 7164–7173, 2019.

[41] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. Mixup:
Beyond empirical risk minimization. In Proc. ICLR, 2018.

[42] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Canavan, Michael Reale, Andy
Horowitz, Peng Liu, and Jeffrey M Girard. Bp4d-spontaneous: A high-resolution spon-
taneous 3d dynamic facial expression database. IVC, 32(10):692–706, 2014.

[43] Kaili Zhao, Wen-Sheng Chu, Fernando De la Torre, Jeffrey F Cohn, and Honggang
Zhang. Joint patch and multi-label learning for facial action unit detection. In Proc.
CVPR, pages 2207–2216, 2015.

[44] Kaili Zhao, Wen-Sheng Chu, and Honggang Zhang. Deep region and multi-label learn-
ing for facial action unit detection. In Proc. CVPR, pages 3391–3399, 2016.

[45] Kaili Zhao, Wen-Sheng Chu, and Aleix M Martinez. Learning facial action units from
web images with scalable weakly supervised clustering. In Proc. CVPR, pages 2090–
2099, 2018.


