A Traning Details

A.1 The configuration of hyper-parameters

The training settings for ReCoT on three benchmarks are shown in Table 1. Most of the
hyper-parameters are the same on the three benchmarks, except for total training epochs and
epoch threshold K.

A.2 Details about baseline

Since existing noisy label learning (NLL) and semi-supervised learning (SSL) methods for
multi-label AU recognition are rare, we re-implement some baselines with proper modifica-
tion, e.g., mean-teacher (MT [5]), noise regularization (NR [1]), bootstrapping-hard (BS-H
[4]), bootstrapping-soft (BS-S [4]), Mixup [6], knowledge distillation (KD [2]). For a fair
comparison, all the backbones of these methods are ResNet34 with ImageNet pretrained
initialization. For MT, we change its activation function to sigmoid to perform multi-label
classification. The consistency loss of MT is still mean square error (MSE), which is the
same as the original paper. For NR, we just change its classification loss, and the rest re-
mains unchanged. Same as M T, we change the activation function of BS to the sigmoid. The
linear weight of noisy labels for BS-H and BS-S is set to 0.8. The difference between BS-H
and BS-S is the process of predictions. BS-S uses soft prediction probability to obtain fusion
labels, while BS-H uses hard prediction labels. For Mixup, we perform the same operation
as BS. For KD, we set the knowledge graph of different AUs as all 1’s for simplicity. The
linear weight of noisy labels for KD is set to 0.5.

B More Results

B.1 The Effectiveness of Noisy Data

Fig.1 presents the results of supervised, SSL, and WSL methods which are all implemented
by us. Compared with the supervised methods, i.e., baseline, WSL methods such as NR and
KD perform better in three databases, demonstrating that noisy data could provide useful
information to improve performance. Apart from EmotioNet, the overall performance of
WSL approaches is better than SSL methods, indicating there exists useful information in
noisy labels.
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Figure 1: The comparison with baseline, MT [5], MLCR [3], Mixup [6], BS-S (H) [4], NR
[1], KD [2] on three databases. Except for the results of MLCR and MT on EmotioNet, we
re-implement all the other methods.
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Table 1: The trainin conﬁguratlons of hyper;parameters for ReCoT on three benchmarks.
onfig EmotioNet | BP4AD | DISFA
optimizer Adam Adam | Adam
base learning rate le-3 le-3 le-3
batch size 100 100 100
total epochs 70 30 30
(a, B) for Lyoisy (1,0.1) (1,0.1) [ (1,0.1)
selected ratio y 0.9 0.9 0.9
fusion ratio u 0.9 0.9 0.9
momentum ratio ¢ 0.9 0.9 0.9
epoch threshold K 40 15 15
balance coefficient A, 1 1 1
balance coefficient A..y,s | 100 100 100
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Figure 2: F1 scores by ReCoT and ResNet-34 are reported for different testing epochs on
EmotioNet without ImageNet pre-training. (a) and (b) show the F1 scores for recognizing
12 AUs by ReCoT and ResNet-34, and (c) shows the average F1 scores by two methods.

B.2 Convergence Speed between Baseline and ReCoT

Fig. 2 shows that our ReCoT is useful for improving network convergence and the discrimi-
native ability for AUs when exploiting the useful information from noisy data. Additionally,
the training process of ReCoT is more stable compared with the baseline, since additional
noisy data is utilized during the training process.

B.3 Different Noise modeling of net,,;sy

We adopt three different types of label noise modeling for net,;sy (see Fig. (2)). Addictive
label noise (Eq. 1) means modeling the label noise by net;,;s, between noisy labels and clean
predictions from net...,. Multiplicative label noise (Eq. (2)) indicates modeling the label
noise transition matrix by net,;sy. Mixed label noise (Eq. (3)) denotes that the label noise
consists of addictive and multiplicative label noise, which can be modeled using both the
noise transition matrix and the residual connection.

Pnoisy = Nelnoisy (x) + netciean (X) y (H

Proisy = Ne€lpoisy (netclean (x)), 2
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Figure 3: Three types of label noise modeling of net,sy. (a) Addictive label noise; (b)
multiplicative label noise; (c) mixed label noise.

Proisy = Ne€lnoisy (netclean (x) )+ neteiean (x) . 3)

Table 2 shows the results of three types of label noise modeling. From Table 2 we can
see that addictive noise modeling is good at modeling the label noise in the noisy set of
EmotioNet, and thus it achieves the best result compared with the other two methods.

Table 2: Three types of label noise modeling on EmotioNet.

Type of label noise modeling Avg.

Addictive noise 70.6
Applicative noise 70.2
Mixed noise 70.3

Table 3: The choices of encoder under pretraining on EmotioNet. Avg. indicates the average
F1 socres of 12 AUs.

Type of Backbone Avg.

ResNet18 65.2
ResNet34 65.9
ResNet50 65.3

B.4 The Influence of Different Encoder Choices

In the Ablation Study section of our main paper, we studied the influence when using differ-
ent encoders, such as ResNet-18, ResNet-34, and ResNet-50. The detailed results are given
in Table 3. We can notice that the F1 score of our method improves by 0.7% from ResNet-
18 to ResNet-34, but then drops by 0.6% from ResNet-34 to ResNet-50. A possible reason
is that the patterns related to AUs maybe not that complicated, and the overall modeling
difficulty comes from the label confusion for the AU recognition task.

B.5 The Influence of Different Noisy Image Scales

We briefly mentioned the influence of different noisy images Ablation Study section of our
main paper. Here, we show the detailed results in Table 4. It can be observed from Table 4



Table 4: The influence of the scale of noisy images on emotioNet. Avg. indicates the average
F1 socres of 12 AUs.

Scale of Noisy Images Avg.

10,000 69.8
50,000 70.6
100,000 70.2

that the performance improves 0.8% as the number of noisy images increases from 10,000 to
50,000, but gets saturated when further increasing the scale. We assume that 50,000 images
can well represent the noisy label distribution in EmotioNet.

Table 5: The results of different views on EmotioNet. Avg. indicates the average F1 score of
12 AUs.

Views’ Type Avg.
Viewl 70.0
View?2 70.1

The Average of Two Views 70.6

B.6 The Results of Different Views on EmotioNet

Since our ReCoT method contains two views, Table 5 shows the performance of two views
and their average on EmotioNet during the inference phase. From Table 5, we can notice that
the difference between two views is minor, while the average of two views is slightly better
than a single view (about 0.5% higher). This suggests that when there is a low computation
cost requirement, we may use a single view to perform inference, and the performance is
still good; otherwise, we can use the average of two views for better performance.
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